Making a sample TmBa₂Cu₃O₇ , 2 grams

Start with $BaCO_3 + CuO$, in this case Tm_4O_7

Find the relevant molecular weights:

- Mass of the sample : m_s=TmBa₂Cu₃O₇ = (168.9342)+2(137.33)+3(63.546)+7(15.9994) = 746.23 g/mol
- m (BaCO₃)= (137.33) + (12.011) + 3 (15.9994) = 197.34 g/mol
- m (CuO)= 63.146 + 15.9994 = 79.5454 g/mol
- m (Tm₄O₇) = 4 (168.9342) + 7 (15.9994) = 787.7326 g/mol

also $\frac{m (BaCO3)}{m (Ba)} = \frac{197.34}{137.33} = 1.43698$, $\frac{m (CuO)}{m (Cu)} = 1.25178$, $\frac{m (Tm4O7)}{m (Tm)} = 1.16574$

We want 2 grams of $TmBa_2Cu_3O_7$, thus

g of Tm : $\frac{1 \text{ mole (Tm)}}{\text{mole (sample)}} \left(\frac{m (Tm)}{m_s}\right) \times 2.0 \text{ g sample} = 0.4528 \text{ g of } Tm \rightarrow \rightarrow$ \checkmark # g of Tm₄O₇ : 0.4528 Tm $\times \frac{m (Tm4O7)}{m (Tm)} = 0.5278 \text{ gram}$ # g of Ba : $\frac{2 \text{ mole (Ba)}}{\text{mole (sample)}} \left(\frac{m (Ba)}{m_s}\right) \times 2.0 \text{ g sample} = 0.7361 \text{ g of } Ba \rightarrow \rightarrow$ \checkmark # g of BaCO₃ : 0.7361 Ba $\times \frac{m (BaCO3)}{m (Ba)} = 1.0578 \text{ gram}$ # g of Cu : $\frac{3 \text{ mole (Cu)}}{\text{mole (sample)}} \left(\frac{m (Cu)}{m_s}\right) \times 2.0 \text{ g sample} = 0.5109 \text{ g of } Cu \rightarrow \rightarrow$

✓ # g of CuO : 0.5109 $Cu \times \frac{m (CuO)}{m (CuO)} = 0.6396 gram$

Check: # gram of Tm + # gram of Ba + # gram of Cu= 2 g

Consider adding 15% to the #g of each compound, and then dry each compound at the specific oven"

♦ BaCO₃ in 125° C , CuO in 450° C , Tm₄O₇ in 900° C for 1 day

Then weigh #g of each compound very very exactly.

Mix all the powders in a mortar (when adding powders, add the heaviest one first) and grind for at least 30 minutes in acetone, put the mixture in an Alumina crucible and place it in 900° C oven for > 1 day.

Repeat grinding the mixture 3 times

Finally, press the powers into pellets and anneal the pellets in oxygen (tube oven)----ask for the detail of this step

How to check the sample ? take X-ray diffraction (XRD) in powder form

Study the crystal structure through diffraction of X-ray photons:

Crystals are regular arrays of atoms, and X-rays can be considered waves of electromagnetic radiation. Atoms scatter X-ray waves, primarily through the atoms' electrons. Just as an ocean wave striking a lighthouse produces secondary circular waves emanating from the lighthouse, so an X-ray striking an electron produces secondary spherical waves emanating from the electron. This phenomenon is known as elastic scattering, and the electron (or lighthouse) is known as the scatterer. A regular array of scatterers produces a regular array of spherical waves. Although these waves cancel one another out in most directions through destructive interference, they add constructively in a few specific directions, determined by Bragg's law: 2d sin θ = n λ

To see a diffraction patter, the size of d would have to be approximately the same as λ of x-rays , which indeed is.

Sample XRD patterns

Crystal Planes

Sets of equally spaced planes within a crystal lattice

1.Express intercepts of the plane with the crystal axes *ua*1,*va*2,*wa*3

2. Take reciprocals of these numbers 1u, 1v, 1w

3. Take the integer h:k:l=1/u:1/v:1/w

4.Use parentheses (*hkl*) – Miller Indices

Axis	X	Y	Z
Intercept points	1	1	8
Reciprocals	1/1	1/1	1/∞
Smallest Ratio	1	1	0
Miller Index (110)			

more examples:

